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Abstract. The practical utility of optimization technologies is often im-
pacted by factors that reflect how these tools are used in practice, includ-
ing whether various real-world constraints can be adequately modeled,
the sophistication of the analysts applying the optimizer, and related
environmental factors (e.g. whether a company is willing to trust pre-
dictions from computational models). Other features are less appreci-
ated, but of equal importance in terms of dictating the successful use
of optimization. These include the scale of problem instances, which in
practice drives the development of approximate solution techniques, and
constraints imposed by the target computing platforms. End-users often
lack state-of-the-art computers, and thus runtime and memory limita-
tions are often a significant, limiting factor in algorithm design. When
coupled with large problem scale, the result is a significant technologi-
cal challenge. We describe our experience developing and deploying both
exact and heuristic algorithms for placing sensors in water distribution
networks to mitigate against damage due intentional or accidental intro-
duction of contaminants. The target computing platforms for this ap-
plication have motivated limited-memory techniques that can optimize
large-scale sensor placement problems.

1 Introduction

Real-world optimization problems are often complicated by factors that make
them more challenging than problem formulations that are studied by academic
researchers. For example, industrial scheduling problems differ significantly from
academic scheduling models like job-shop and resource-constrained scheduling
problems because of large numbers of company-specific constraints. Most re-
searchers acknowledge the impact of such side constraints, but what is far less
appreciated is the degree to which factors like problem size and target compu-
tational platform impact the practical solution of real-world optimization prob-
lems. In this paper we present a real-world case study that highlights how mem-
ory limitations impact a deployed solution technology.

Our case study involves the protection of drinking water distribution systems,
found in municipalities throughout the world. Public water distribution systems



are inherently vulnerable to accidental or intentional contamination because of
their distributed geography. The use of on-line, real-time contaminant warning
systems (CWSs) is a promising strategy for mitigating these risks. The general
goal of a CWS is to identify a low-probability, high-impact contamination in-
cident while allowing sufficient time for an appropriate response that mitigates
adverse impacts. A CWS may complement conventional routine monitoring by
quickly providing information on unusual threats to a water supply.

A key element of the design of an effective CWS is the strategic placement
of sensors throughout the distribution network. We have recently demonstrated
that a canonical sensor placement formulation is equivalent to the well-known
p-median facility location problem. However, the p-median problems that arise
in real-world sensor placement applications are much larger than typical facility
location instances considered in the literature. For example, the largest p-median
instances commonly investigated are limited to approximately 10,000 facilities
and customers. In contrast, the p-median instances arising in real-world CWS
design can involve as many as 50,000 facilities and hundreds of thousands of cus-
tomers. The magnitude of these instances requires efficient computational tech-
niques to deal with the increase in solution difficulty. Further, these large-scale
instances have significant memory footprints that exceed the limits available in
the computing platforms of most water utilities.

We illustrate how memory limitations have influenced the development of
sensor placement algorithms in the TEVA-SPOT Toolkit [10] (SPOT). SPOT
provides a sensor placement framework that facilitates research in sensor place-
ment optimization and enables the practical application of sensor placement
solvers to real-world CWS design applications. SPOT contains algorithms for
solving the integer programming formulation exactly (e.g., via CPLEX), heuris-
tically via GRASP, and heuristically via Lagrangian relaxation. The United
States Environmental Protection Agency (USEPA) has funded the development
of SPOT to support the analysis of US water distribution networks in the USEPA
TEVA program [16]. SPOT’s support of limited-memory sensor placement tech-
niques has been crucial for the successful analysis of these large-scale networks.

This paper is organized as follows. We begin in Section 2 with a detailed
description of the CWS problem and the corresponding integer programming
formulation. We discuss limited-memory strategies for integer programming,
GRASP and Lagrangian relaxation in Sections 3, 4, and 5 respectively. We
conclude in Section 6 with a discussion of the implications of our results for
real-world problem solving.

2 Background

Contamination warning systems (CWSs) have been proposed as a promising
approach for detecting contamination incidents in drinking water distribution
systems. The goal of a CWS is to detect contamination incidents early enough
to allow for effective public health and/or water utility intervention to limit
potential public health or economic impacts. There are many challenges to de-



tecting contaminants in drinking water systems: municipal distribution systems
are large, consisting of hundreds or thousands of miles of pipe; flow patterns are
driven by time-varying demands placed on the system by customers; and distri-
bution systems are looped, resulting in mixing and dilution of contaminants. The
drinking water community has proposed that CWSs be designed to maximize
the number of contaminants that can be detected in drinking water distribution
systems by combining online sensors with public health surveillance systems,
physical security monitoring, customer complaint surveillance, and routine sam-
pling programs [22].

For CWS design, the general goal of sensor placement optimization is to
place a limited number of sensors in a water distribution network such that
the impact to public health of contaminant injection is minimized. However,
there is no specific formulation of the problem that is widely accepted by the
water resources management community. There are a wide range of important
design objectives for sensor placements (e.g., minimizing the cost of sensor in-
stallation and maintenance, the response time to a contamination incident, and
the extent of contamination), and researchers have developed different formu-
lations when studying these objectives. Further, researchers have developed a
variety of technical approaches for solving sensor placement problems including
mixed-integer programming (MIP) models [6, 5, 14, 13, 19, 23], combinatorial
heuristics [11, 12, 17], and general-purpose metaheuristics (e.g., [17]).

A common feature of most sensor placement formulations is that they rely
either directly or indirectly on contaminant transport simulation models. Simu-
lation tools, like EPANET [21], perform extended-period simulation of the hy-
draulic and water quality behavior within pressurized pipe networks. These mod-
els can be used to evaluate the expected flow in water distribution systems, and
they can model the transport of contaminants and related chemical interactions.
Thus, a water utility can assess risks to their distribution network by considering
simulations of an ensemble of contamination incidents, which reflect the impact
of contamination at different locations, times of the day, etc.

A key limitation of early sensor placement formulations is that they incor-
porate contamination transport simulation results indirectly. Consequently, the
optimized value of the final solution may not accurately approximate a risk
assessment performed with contaminant transport simulations. We have pro-
posed a mixed-integer programming (MIP) model that resolves this difficulty
by directly integrating contaminant transport simulation results [7, 6]. The MIP
objective exactly captures water utilities’ current risk metrics. Furthermore, this
model can minimize a variety of different design objectives simply by integrat-
ing different statistics from the simulation results. This model assumes that a
potentially large number of contamination incidents can be simulated, but these
simulations are preprocessing steps that can be done in advance of the optimiza-
tion process. Thus, the time needed for simulation does not impact the time
spent performing sensor placement.

Our MIP formulation for sensor placement is:



(SP) minimize
∑

a∈A
αa

∑

i∈La

daixai

where





∑
i∈La

xai = 1 ∀a ∈ A
xai ≤ si ∀a ∈ A, i ∈ La∑

i∈L si ≤ p
si ∈ {0, 1} ∀i ∈ L
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

This MIP minimizes the expected impact of a set of contamination incidents
defined by A. For each incident a ∈ A, αa is the weight of incident a, frequently
a probability. The EPANET simulator reports contamination levels at a set
of locations, denoted L, where a location refers to network junction. For each
incident a, La ⊆ L is the set of locations that can be contaminated by a. Thus
a sensor at a location i ∈ La can detect contamination from incident a at the
time contamination first arrives at location i. Each incident is witnessed by the
first sensor to see it. For each incident a ∈ A and location i ∈ La, dai defines
the impact of the contamination incident a if it is witnessed by location i. This
impact measure assumes that as soon as a sensor witnesses contamination, then
any further contamination impacts are mitigated (perhaps after a suitable delay
that accounts for the response time of the water utility). The si variables indicate
where sensors are placed in the network, subject to a budget p, and the xia

variables indicate whether incident a is witnessed by a sensor at location i.
We may not be able to witness all contamination incidents with a given

set of sensors. To account for this, L contains a dummy location. This dummy
location is in all subsets La. The impact for this location is the impact of the
contamination incident after the entire contaminant transport simulation has
finished, which corresponds to the impact that would occur without an online
CWS.

Remarkably, SP is identical to the well-known p-median facility location prob-
lem [15]. In the p-median problem, p facilities (e.g., central warehouses) are to be
located on m potential sites such that the sum of distances dai between each of
n customers (e.g., retail outlets) and the nearest facility i is minimized. In com-
paring SP and p-median problems, we observe equivalence between (1) sensors
and facilities, (2) contamination incidents and customers, and (3) contamina-
tion impacts and distances. While SP allows placement of at most p sensors,
p-median formulations generally enforce placement of all p facilities; in practice,
the distinction is irrelevant unless p approaches the number of possible locations.

The flexibility of this sensor placement formulation is illustrated by the
TEVA-SPOT Toolkit (SPOT) [10], which integrates a variety of sensor place-
ment solvers developed by Sandia National Laboratories and the Environmental
Protection Agency, along with many academic collaborators [5, 7, 6]. SPOT in-
cludes general-purpose heuristic solvers, integer programming heuristics, exact
solvers, and linear-programming bounding techniques. SPOT can place sensors
to minimize a variety of design objectives, including population-based public
health measures, time to detection, extent of pipe contamination, volume con-
sumed, and number of failed detections.



The size of the SP formulation is largely a function of the the total number
of impacts, D. This is the dominant term in the number of constraints, the
number of variables, and the number of nonzeros in the constraint matrix. We
can compute a lower bound on SP by relaxing the integrality constraints on the
variables and solving the resulting linear program (LP). Solving the LP involves
linear algebra. Dense methods would require space proportional to D2. Solvers
use sparse methods as much as possible. However, the space requirements are
generally superlinear in D. Because integer-programming solvers use LPs for
bounding subproblems, they require at least as much space as LP asymptotically.

Water distribution networks analyzed in the TEVA program have 1,000s to
10,000s of pipes and junctions. Due to memory limitations, contamination in-
cidents are typically restricted to a small number of times during a day (e.g.
morning, afternoon, evening and night incidents). The number of locations con-
taminated by an incident can be highly variable; although many incidents impact
a small number of locations, some large networks have many incidents that con-
taminate a large fraction of the network. Many of the SP analyses performed
in the TEVA program have had millions of impact values. Very large sensor
placement problems considered in the TEVA program have had over 40,000 po-
tential sensor placement locations, 20,000 contamination incidents and close to
30 million impact values. Furthermore, real-world analyses will ultimately re-
quire the consideration of many more contamination incidents, for example to
model changes in weekday vs. weekend demands, as well as seasonal changes in
demands.

3 Integer Programming

The SP MIP model provides a generic approach for performing sensor placement
with a variety of design objectives. However, the size of this MIP formulation
can quickly become prohibitively large, especially for 32-bit computers (yielding
a maximum of 4GB of RAM in the case of Unix systems, and in practice 3GB
of RAM in the case of Windows systems). As noted in the previous section, SP
can require millions of impact values for large water distribution systems.

In Berry et al. [4, 7], we note that for any given contamination incident a,
there are often many impacts dai that have the same value. If the contami-
nant reaches two junctions at approximately the same time, then the impact
for these two junctions would have the same impact values. For example, this
occurs frequently when we use a coarse reporting time-step for the water quality
simulation.

This observation led to a revised formulation that treats sensor placement
locations as equivalent if their corresponding contamination impacts are the
same for a given contamination incident. Let Lai be a maximal set of locations
in A that all have the same impact for incident a. Considering any witness in
Lai equivalent reduces the set of effective witness “locations” to a new set L̂a.
The new MIP formulation is:



(waSP) minimize
∑

a∈A
αa

∑

i∈L̂a

daixai

where





∑
i∈L̂a

xai = 1 ∀a ∈ A
xai ≤

∑
j∈L̂ai

sj ∀a ∈ A, i ∈ L̂a∑
i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

This MIP selects both a group of sensors to witness an incident and an actual sen-
sor from the group. The fundamental structure of this formulation changes only
slightly from SP, but in practice this MIP often requires significantly less mem-
ory. Specifically a grouping of k equivalent locations removes k − 1 entries from
the the objective, k − 1 variables, and k − 1 constraints. Every feasible solution
for SP has a corresponding solution in waSP with the same sensor placement.
We can always map the selected observation variable to a real sensor with the
same impact. Because the impact for each incident is the same, the objective
value is the same, so we can use waSP to find optimal sensor placements.

The waSP model revises SP to exploit structure in SP that can make the MIP
formulation smaller. We have developed two extensions of this idea in Berry et
al. [4]: witness aggregation and incident aggregation. These aggregation strate-
gies attempt to consolidate the impact values to create smaller MIP formulations
for sensor placement that approximate SP.

3.1 Witness Aggregation

We can generalize the waSP formulation to consider location values as equivalent
if their impact values are approximately equal. For each incident a, consider a list
of locations in La sorted by impact. A superlocation is a contiguous sublist of this
sorted list. Generally, we group locations into a superlocation if the difference in
their impact values meets a given threshold. In Berry et al. [7], we describe two
ways for creating superlocations: (1) the ratio of largest to the smallest impact
in the superlocation is small, and (2) the difference between the largest and the
smallest impact is small. Note that the locations grouped in a superlocation
for an incident are not necessarily located physically close in the network even
though the contamination for incident a reaches them at approximately the same
time.

Let L̃ai ⊆ La be the locations in the ith superlocation for incident a. We
denote the set of superlocations for incident a by L̃a. Let d̃ai be the largest
impact value for incident a if witnessed by any location in L̃ai (that is, d̃ai =
maxi∈L̃ai

dai). And let xai be a binary variable that is 1 if incident a is witnessed
by some location in L̃ai. Then the MIP for general witness aggregation is the
waSP formulation where we replace dai by d̃ai, replace L̂ai by L̃ai, and replace
L̂ai by L̃ai.

We have shown that the optimal solution to a problem with ratio aggrega-
tion is guaranteed to be an approximation for the original problem with quality



proportional to the ratio. However, it is hard for a user to determine a good
threshold without carefully exploring the data.

3.2 Incident Aggregation

In some cases, we can replace a pair or a group of contamination incidents with
a single new incident that is equivalent. In Berry et al. [7], we describe one such
strategy (called scenario aggregation in that paper for historical reasons). This
aggregation strategy combines two incidents that impact the same locations in
the same order, allowing for the possibility that one incident continues to impact
other locations. For example, two contamination incidents should travel in the
same pattern if they differ only in the nature of the contaminant, though one may
decay more quickly than the other. Aggregated incidents can be combined by
simply averaging the impacts that they observe and updating the corresponding
incident weight αa.

3.3 Impact

These aggregation techniques significantly improved our ability to apply MIP
solvers to real-world sensor placement applications. The use of the waSP for-
mulation is critical to solve large sensor placement problems, even on high-end
workstations with large memory. For example, in Berry et al. [7] we show that
aggregating witnesses with the same impacts can reduce the number of nonzeros
in the MIP model by a factor of two, and it reduces the total runtime by a
factor of four. Further, ratio witness aggregation and incident aggregation can
be combined to formulate an approximate sensor placement formulation that
reduces the number of nonzeros by a factor of 7 and the runtime by a factor of
200, while generating a solution that is within 5% of optimal.

4 The GRASP Heuristic

The MIP formulations described in the previous section cannot be solved to
optimality for very large networks, even on high-end workstations with a lot of
RAM. Thus, we have adapted heuristic algorithms for the p-median problem
to solve SP. The current state-of-the-art heuristic for the p-median problem is
the GRASP algorithm recently introduced by Resende and Werneck [20]. This
GRASP heuristic is a three-phase search procedure. In the first phase, a set of
high-quality solutions are generated using biased greedy construction techniques.
Steepest-descent hill-climbing is then used to transform each of the resulting
solutions into local optima. Finally, path relinking is used to further explore
the set of solutions lying at the intersection of the resulting local optima. For a
complete description of this heuristic, we refer the reader to [20].

On a series of wide-ranging tests, we observed that the GRASP heuristic
was able to locate solutions to very large p-median instances (with over 10,000
facilities and 50,000 customers) in approximately ten minutes of run-time on a



modern workstation-class computer [18]. This is approximately 5-10 times faster
than CPLEX when solving the waSP MIP formulation introduced in Section 3.
Further, the solutions obtained by GRASP were often optimal (as verified by
comparison with exact solutions to the MIP formulation). The only drawback to
the GRASP heuristic involved the memory requirements, which reached 16GB
of RAM for the largest instance considered. This capacity is beyond the limits
of what is available in most end-user environments for which CWS design is tar-
geted; here, the typical platform is either a 32-bit workstation (with a maximum
capacity of 4GB of RAM) or a Windows workstation, which is limited to 8GB
of RAM even when running on 64-bit CPUs.

The GRASP heuristic creates a dense matrix of all customer-facility “dis-
tances”, as the cost of determining the decrease in “cost” during a local search
move is dictated by the lookup cost of specific dai impact values. The dense ma-
trix approach replicates information, but in doing so yields constant-time lookup
of the dai coefficients. An alternative “sparse” representation simply stores, for
each a ∈ A, a tree containing pairs (i, dai) for all i defined for the incident a.
The resulting representation yields logarithmic (in the number of defined daj for
a given a) lookup costs, necessarily slowing the execution of the GRASP heuris-
tic. However, in practice the slow-down is less than 50%, while the memory
requirements are reduced by a factor of four or more.

SPOT provides variants of the GRASP heuristic using the dense and sparse
storage schemes for the dai, and this optimizer has been widely used in the
USEPA TEVA program. However, even with the sparse representation the largest
networks considered in the USEPA TEVA program are still too large for 32-bit
workstations. Other avenues have been used to reduce the problem size further
for these problems, such as restricting the number of locations for sensors. These
strategies may preclude the optimal solution, but they provide a practical alter-
native for heuristic optimization.

5 Lagrangian Heuristic

In this section, we present a Lagrangian-based bounding procedure and approx-
imation heuristic which requires O(n + D) space, where n is the number of
sensor locations and D is the total number of impacts. This is an asymptoti-
cally optimal memory requirement for an in-core implementation. We use the
Lagrangian-based lower-bounding method for the p-median problem described
by Avella, Sassano, and Vasil’ev [1]. They give a Lagrangian model for which one
can compute the optimal solution, given a set of Lagrangian multipliers, in linear
space and near-linear time. Barahona and Chudak [3] give a Lagrangian formula-
tion for the related unconstrained facility location problem, where one balances
a facility opening cost with the service costs rather than limiting the number of
facilities. Barahona and Chudak detail how to use subgradient search, specifi-
cally Barahona and Anbil’s Volume algorithm [2], to find Lagrangian multipliers
that produce progressively higher lower bounds. We adapted their method to
the p-median problem. This search converges to a set of Lagrangian multipliers



for which the optimal solution to our relaxed problem is an optimal solution to
the p-median LP relaxation. We then use our constrained rounding algorithm [8]
to randomly select p sensor locations biased by the LP relaxation.

We now describe the Lagrangian relaxation model. As with all Lagrangian
relaxation, we remove some of the constraints, leaving behind a problem that is
easy to solve. We apply pressure to satisfy the constraints we have relaxed by
adding penalties to the objective function. These penalties are proportional to
the constraint violations. Thus there is no penalty if a constraint is met, a small
penalty for a small violation, and a larger penalty for a larger violation.

We relax the first set of constraints in the SP formulation, those that require
each incident is witnessed by some sensor; recall that this might be the dummy
sensor that indicates a failure to detect the incident. This constraint is written
as an equality, because that is a more efficient integer programming formulation.
However, the difficult part of the constraint is insuring that at least one sensor
witnesses each incident. The objective will prevent over-witnessing, so for the
sake of the Lagrangian relaxation, we consider these constraints to be inequal-
ities. For some incident a, this constraint is violated for a proposed setting of
the si and xai variables if

∑
i∈La

xai < 1, giving a violation of 1 −∑
i∈La

xai.
We weight each such violation with its own Lagrangian multiplier λa, which
allows us to penalize some violations more than others. Adding a penalty term
λa − λa

∑
i∈La

xai to the objective for each incident a, the Lagrangian model
becomes:

(LAG) minimize
∑

a∈A


αa

∑

i∈L̂a

(dai − λa)xai


 +

∑

a∈A
αaλa

where





xai ≤ si ∀a ∈ A, i ∈ L̂a∑
i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

For a fixed set of λa, we can compute the optimal value of LAG in linear
space and near-linear time using a slight variation on the method described by
Avella, Sassano, and Vasil’ev [1]. The optimal solution to LAG gives a valid lower
bound on the value of an optimal solution to the p-median (SP) problem. This
is because any feasible solution to the p-median problem is feasible for LAG. It
has a zero violation for each of the lifted constraints and a value equal to the
original p-median value.

Barahona and Chudak [3] describe the Volume subgradient method as applied
to the unconstrained facility location problem. This method begins with λa =
1 for all incidents a, solves the relaxed problem, then iteratively updates the
multipliers, increasing the multipliers in proportion to the violation. The updates
require space and time linear in the number of variables. We modified the Vol
unconstrained facility location code, available in the COIN-OR repository [9] for
the p-median problem. This will converge to an optimal solution for the p-median
problem.



Given a fractional solution to the p-median LP, we can treat the fractional
values as probabilities and select sensors randomly according to this probability.
However, one is unlikely to get precisely p sensors this way. We use the method of
Berry and Phillips [8] for efficiently sampling over the “lucky” distribution where
we select precisely k sensors. If necessary, we then select the dummy location.

In preliminary tests with a moderate1 sized problem, the Lagrangian method
required approximately 1/3 the space of the GRASP heuristic and usually found
a solution almost as good while running up to 2.5 times longer. For example, on
a problem with 3358 locations, 1621 incidents, and 5 sensors, considering four
different types of objectives, the Lagrangian solver required 45Mb of memory
while the GRASP heuristic required 154Mb of memory. The GRASP heuristic
found the optimal solution in all four cases as verified by the MIP. The La-
grangian heuristic was within .5% of this for three out of the four objectives.
Running times for GRASP ranged from 33.8 seconds to 44 seconds. The La-
grangian ran in less than 86 seconds for 3 out of 4 objectives. For the fourth
objective, Lagrangian ran for 105 seconds and had a gap of 64%, showing that
the Lagrangian behavior can be less stable than GRASP.

As we noted above, the Lagrangian method provides a lower bound on the
value of an optimal solution to the p-median (SP) problem. Further, this lower
bound is computed with less memory than an LP relaxation of SP. Thus, another
practical motivation for applying the Lagrangian method is that it computes a
valid lower bound on the value of solutions generated by GRASP!

We also consider the use of witness aggregation to further reduce the mem-
ory required for the Lagrangian method, particularly aggregation of locations
that have the same impact values. However, we cannot embed the set-cover con-
straints (the second set of constraints in the waSP formulation) without altering
the Lagrangian model. We can run the heuristic with the aggregated witnesses
where the superlocations are not directly associated with their constituent loca-
tions. This creates a straight p-median problem for the Lagrangian solver that
now no longer has the same optimal solution. Because there are fewer opportu-
nities to witness incidents, this revised formulation has a higher optimal impact,
and therefore the current Lagrangian solver does not give a valid lower bound.
However, we can still compute a heuristic solution by solving this modified prob-
lem and mapping superlocations back to real locations.

We have developed a preliminary version of an aggregated Lagrangian heuris-
tic that simply selects the first real location in a superlocation list. For a large-
scale problem with 42,000 junctions, the Lagrangian heuristic required only
100Mb for the aggregation problem where we equated only witnesses of equal
impact. This is a considerable reduction from the 1.8GB the Lagrangian method
required with no witness aggregation, even of equal impact (the SP version).
The GRASP heuristic required 17GB; there is no value for witness aggregation
in the GRASP heuristic, so this is the memory requirement for the SP version.
However, the objective of the Lagrangian solution is 60% worse than the solution
found by GRASP. The significant reduction in space motivates more work on this

1 This problem is the same size as those Avella et. al. call “large-scale.”



aggregated Lagrangian heuristic, and we expect more sophisticated techniques
for mapping from supernodes to real location will improve its performance.

6 Discussion and Conclusion

In practice, a particular sensor placement problem must be solved numerous
times, e.g., to generate sensor budget versus performance trade-off curves, or
to guide search toward solutions of a specific form. Consequently, the design of
SPOT was initially focused on execution speed, to facilitate maximal analysis
throughput. For the smaller sensor placement problems examined in the early
phases of this project, emphasis on run-time achieved this goal.

However, as larger and larger problems became available, our design focus
rapidly shifted from minimizing run-time toward minimizing the memory foot-
print for large sensor placement problems. SPOT is intended for general use by
water utilities throughout the United States, most of which do not possess high-
end computing platforms, and limited-memory sensor placement strategies are
needed for commonly available workstations. This change in emphasis focused
algorithm design and development efforts in fundamentally new, unanticipated
directions.

There is a broad lesson here: a strict focus on run-time can severely limit the
applicability of algorithmic techniques to real-world problems. Non-algorithmic
considerations can significantly impact the practicality of an algorithmic ap-
proach. End-users consider a wide range of factors when deciding to use a com-
putational tool, such as likely acceptance in their organization, the background
of users, and required computation resources. These factors can easily outweigh
algorithmic considerations like run-time efficiency. This is not a new observation,
but what is surprising is that most discrete optimization research appears to be
driven strictly by run-time considerations, e.g., to obtain either new best-known
solutions to benchmark problems or reduce the run-time required to obtain high-
quality solutions. This project illustrates that focusing on other performance
factors can lead to fundamentally new algorithmic challenges, and that assess-
ments of algorithmic strategies should consider trade-offs between factors that
impact their use in practice.
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